На правах рукописи

САЛАХУТДИНОВА ОЛЬГА АЛЕКСАНДРОВНА

САМООРГАНИЗАЦИЯ И СВОЙСТВА ВЫСОКОРАЗБАВЛЕННЫХ ВОДНЫХ РАСТВОРОВ ПРОИЗВОДНЫХ ГЛИКОЛЬУРИЛА И БЕНЗОЙНОЙ КИСЛОТЫ: ВЛИЯНИЕ ТЕМПЕРАТУРЫ И СТРОЕНИЯ ВЕЩЕСТВ

02.00.04 – Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

Диссертации на соискание ученой степени кандидата химических наук

Казань - 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте органической и физической химии им. А.Е. Арбузова Казанского научного центра Российской академии наук, в лаборатории Физико-химии супрамолекулярных систем

Научный руководитель:	Рыжкина Ирина Сергеевна Доктор химических наук, доцент
Официальные оппоненты:	Мельников Михаил Яковлевич Доктор химических наук, профессор, заведующий кафедрой химической кинетики химического факультета ФГБОУ ВО «Московского государственного университета имени М.В. Ломоносова»
	Галль Лидия Николаевна Доктор физико-математических наук, профессор, заведующая лабораторией экологической масс-спектрометрии ФГБОУ Института аналитического приборостроения Российской академии наук
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук, г. Иваново

Защита диссертации состоится «____» ____ 2016 г. в _____час. ____мин. на заседании диссертационного совета Д 002.039.01 при Федеральном государственном бюджетном учреждении науки Институте биохимической физики им. Н.М. Эммануэля Российской академии наук по адресу: 119334, Москва, ул. Косыгина, 4.

С диссертацией и авторефератом можно ознакомиться в библиотеке Федерального государственного бюджетном учреждении науки Института химической физики им. Н.Н. Семенова Российской академии наук по адресу: 119991, Москва, Ленинский проспект, 38 и на сайте <u>http://ibcp.chph.ras.ru.</u>

Автореферат разослан «___» ____ 2016 г.

Учёный секретарь диссертационного совета Д 002.039.01,

кандидат химических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования Высокоразбавленные водные растворы биологически активных веществ (БАВ) обладают большими потенциальными возможностями и представляют значительный интерес с точки зрения фундаментальных и прикладных исследований в области химии растворов, зарождения и эволюции биосферы, экологии, фармакологии, токсикологии, медицины, сельского хозяйства. Однако физико-химические основы действия высокоразбавленных растворов до недавнего времени оставались неясными.

В последнее десятилетие научным коллективом под руководством академика А.И. Коновалова (ИОФХ ИМ. A.E. Арбузова КазНЦ РАН) разработан оригинальный метолологический изучению высокоразбавленных подход К растворов. В холе систематического изучения комплексом физико-химических методов (динамическое (ДРС) и электрофоретическое (ЭРС) рассеяние света, кондуктометрия, тензиометрия, рН-метрия, диэлькометрия, поляриметрия, атомно-силовая микроскопия (ACM), ΥΦ-, ЭПРспектроскопия) высокоразбавленных водных растворов впервые обнаружено, что растворы многих БАВ в широкой области расчетных концентраций (10⁻²⁰-10⁻⁶ М) представляют собой самоорганизованные дисперсные системы, дисперсной фазой в которых являются наноразмерные молекулярные ансамбли (до 400 масштабные нм). названные наноассоциатами. Впервые показано, что формирование наноассоциатов обусловливает возникновение немонотонных концентрационных зависимостей физико-химических свойств и, что особенно интересно и важно, коррелирует с некоторыми биологическими свойствами высокоразбавленных растворов.

Установлено, что исходные растворы многих изученных БАВ (10⁻⁵-10⁻¹ М) также представляют собой наногетерогенные системы, в которых образуются частицы размером в десятки и сотни нм, представляющие собой агрегаты вещества и супрамолекулярные домены. По мере разбавления при соблюдении процедуры приготовления растворов домены претерпевают перестройку, преобразуясь в наноассоциаты.

Разработанная методика изучения высокоразбавленных растворов, включающая в себя использование экранирующего пермаллоевого контейнера, защищающего содержимое от внешних низкочастотных электромагнитных полей (ЭМП) (гипоэлектромагнитные условия), позволила впервые получить доказательства различной природы наноассоциатов и доменов. Найдено, что образование наноассоциатов происходит только при выдерживании высокоразбавленных (10⁻²⁰-10⁻⁶ М) растворов в естественных условиях. В растворах, выдержанных в гипоэлектромагнитных условиях, расчетные концентрации которых ниже пороговой (с_п), наноассоциаты не образуются, свойства растворов практически соответствуют свойствам растворителя - воды. Следовательно, для формирования наноассоциатов необходимы низкочастотные ЭМП, являющиеся неотъемлемой составной частью естественной среды обитания живых организмов.

В настоящее время на пути дальнейшего физико-химического обоснования действия высокоразбавленных растворов остается нерешенным ряд важных вопросов, например,

-образование наноассоциатов в диапазоне физиологически важных температур;

-влияние химического и пространственного строения растворенного БАВ на самоорганизацию высокоразбавленных растворов;

-взаимосвязь немонотонных зависимостей параметров наноассоциатов и физикохимических свойств растворов БАВ в области высоких разбавлений, позволяющая прогнозировать возникновение немонотонного профиля «концентрация-биоэффект» при воздействии растворов на биосистему, а также дающая возможность объяснения смены знака и «зоны молчания» на профиле биоэффекта и т.д.

В этой связи работа по изучению влияния температуры на самоорганизацию и свойства водных растворов БАВ различного химического и пространственного строения, а также накопление новых экспериментальных данных и их систематизация на основе более широкого круга объектов исследования, поиск ответов на поставленные вопросы, является весьма актуальной.

Цель исследования состоит в изучении влияния физиологически важных температур, гипоэлектромагнитных условий, а также различного химического и пространственного строения веществ в ряду структурных аналогов некоторых БАВ на самоорганизацию и свойства высокоразбавленных растворов, установлении взаимосвязи между параметрами наноассоциатов, физико-химическими и биологическими свойствами растворов исследованных веществ.

Для достижения цели были поставлены и решены следующие задачи:

1. Провести систематическое исследование самоорганизации (методы ДРС, ЭРС) и физикохимических свойств (удельная электропроводность, pH) разбавленных растворов некоторых производных гликольурила и бензойной кислоты, выдержанных в естественных и гипоэлектромагнитных условиях.

2. Изучить влияние химического и пространственного строения растворенного вещества на самоорганизацию и свойства разбавленных растворов в ряду производных бензойной кислоты, алкилированных гликольурилов и гликольурилов, содержащих фрагмент (S)-, (R)-, (SR)-метионина (Met).

3. Установить возможность образования наноассоциатов в диапазоне температур 25-45 °C на примере разбавленных растворов природных (4-аминобензойная кислота, ПАБК) и синтетических (бромид цетилтриметиламмония, БЦТА) биологически активных веществ, проследить за изменениями физико-химических свойств растворов в зависимости от разбавления и температуры с использованием методов ДРС, ЭРС, анализа траектории наночастиц (АТН), спектроскопии ЭПР спиновых зондов, кондуктометрии.

4. На основании результатов по изучению самоорганизации и свойств исследованных растворов БАВ выбрать вещества, высокоразбавленные растворы которых потенциально способны к проявлению биоэффектов, изучить биологическую активность растворов этих веществ, установить наличие взаимосвязи между параметрами наноассоциатов, физикохимическими и биологическими свойствами растворов исследованных веществ и объяснить полученные результаты с позиций самоорганизации растворов.

Научная новизна

• В результате изучения разбавленных растворов (расчетные концентрации $1 \cdot 10^{-16} - 1 \cdot 10^{-2}$ М) производных гликольурила и бензойной кислоты, выдержанных в естественных и гипоэлектромагнитных условиях, впервые найдено, что гидрофобность алкильных радикалов у атома азота гликольурила и гидрофильные свойства заместителей в ароматическом кольце бензойной кислоты оказывают существенное влияние на самоорганизацию высокоразбавленных растворов. В обоих рядах - производных гликольурила и бензойной кислоты - выявлены вещества, растворы которых ниже пороговой концентрации, лежащей в интервале $1 \cdot 10^{-7} - 1 \cdot 10^{-4}$ М, способны или не способны к образованию наноассоциатов и немонотонным изменениям свойств.

• На примере растворов гликольурила, содержащего фрагмент (S)-, (R)- или (SR)-Меt впервые показано, что самоорганизация и свойства высокоразбавленных растворов существенным образом зависят от конфигурации энантиомеров. Растворы гликольурила, содержащего фрагмент (S)-Меt (энантиомерно чистый диастереомер), (SR)-Меt (рацемат) ниже пороговой концентрации $1 \cdot 10^{-4}$ М способны к пространственно-временной самоорганизации, следствием которой является образование наноассоциатов и немонотонные изменения свойств, а в растворах гликольурила с фрагментом (R)-Меt (энантиомерно чистый диастереомер) эта способность отсутствует.

• Впервые изучены температурные зависимости в интервале 25-45 °C параметров наноассоциатов, обусловливающих немонотонные изменения физико-химических свойств разбавленных растворов 4-аминобензойной кислоты и бромида цетилтримеламмония с расчетными концентрациями 1.10⁻¹⁰-1.10⁻⁷ М от температуры.

• Установлена взаимосвязь между изменениями параметров наноассоциатов, физикохимическими свойствами растворов бромида цетилтриметиламмония, 4-аминобензойной и 2гидроксибензойной кислот в зависимости от разбавления и их биологическим действием в отношении роста бактерий и энергообмена микробиоценоза активного ила, влияющего на степень очистки сточных вод. На основании установленной взаимосвязи впервые с позиций самоорганизации дано объяснение биоэффектов растворов этих соединений до и после пороговой концентрации.

Теоретическая и практическая значимость работы

Полученные результаты носят фундаментальный характер, являются важной составной частью физико-химического обоснования действия высокоразбавленных растворов, необходимого для объяснения немонотонных зависимостей «концентрация-биоэффект», разработки лекарственных средств нового поколения и создания экологически безопасных, ресурсо- и энергосберегающих технологий (Программа фундаментальных научных исследований Президиума РАН на 2013-2020 гг., п.44.45.46,48). Экспериментально установленная биологическая активность разбавленных растворов регуляторов роста микроорганизмов (ПАБК, салициловая кислота, БЦТА) открывают новые перспективы их использования и расширяют спектр биологического действия.

Положения, выносимые на защиту:

1. Результаты изучения самоорганизации (размер, ζ-потенциал наноассоциатов и доменов) и физико-химических свойств (кондуктометрия, pH) разбавленных растворов производных гликольурила, бензойной кислоты с расчетными концентрациями $1 \cdot 10^{-16} - 1 \cdot 10^{-1}$ M, выдержанных в естественных и гипоэлектромагнитных условиях.

3. Оценка влияния различий химического и пространственного строения растворенного вещества на самоорганизацию и свойства разбавленных растворов в ряду структурных аналогов бензойной кислоты, алкилированных гликольурилов и гликольурилов, содержащих фрагмент (*S*)-Met, (*R*)-Met и (*SR*)-Met.

2. Результаты изучения температурных (25-45 °C) зависимостей параметров (размер, с потенциал) доменов и наноассоциатов, а также физико-химических свойств (кондуктометрия, спектроскопия ЭПР спиновых зондов) разбавленных растворов 4аминобензойной кислоты и броимда цетилтриметиламмония.

4. Объяснение немонотонных зависимостей «концентрация-биоэффект» с позиций самоорганизации растворов на примере исследованного круга соединений и использованных в работе биотестов.

<u>Личный вклад автора</u> Экспериментальные данные, приведённые в диссертационной работе, получены автором лично или при его непосредственном участии. Автор участвовал в обработке, анализе, описании результатов, подготовке публикаций по теме диссертационной работы, апробации работы на конференциях, обсудил и обобщил результаты диссертационной работы и сформулировал выводы и основные положения, выносимые на защиту.

Результаты работы обоснованы и достоверны

Научные положения, выводы и результаты, сформулированные в диссертации, обоснованы экспериментальными данными. Экспериментальная часть работы выполнена на высоком научном уровне с применением современных методов исследования и использованием высокоточной и высокочувствительной поверенной измерительной техники. Объем экспериментального материала, взаимосогласованность результатов, комплексное физико-химических использование современных методов исследования позволяют заключить, что полученные Салахутдиновой Ольгой Александровной данные являются достоверными.

<u>Апробация работы</u> Основные результаты диссертационной работы докладывались и обсуждались на Итоговых научных конференциях Казанского научного центра РАН (Казань, 2011-2013); VI Международном конгрессе «Слабые и сверхслабые поля и излучения в биологии и медицине» (Санкт-Петербург, 2012); Международной конференции «Структура

воды: физические и биологические аспекты» (Санкт-Петербург, 2013); XXV Всероссийском Симпозиуме Современная химическая физика (Туапсе, 2013); XXI Всероссийской конференции «Структура и динамика молекулярных систем» (Уфа, 2014); XXVI Международной Чугаевской конференции по координационной химии (Казань, 2014); IX Всероссийской конференции «Высокореакционные интермедиаты химических и биохимических реакций» (Московская область, 2014); II научно-практической конференции магистров, аспирантов и молодых учёных «Химия в федеральных университетах» (Екатеринбург, 2014); XII Всероссийской конференции с международным участием «Проблемы сольватации и комплексообразования в растворах. От эффектов в растворах к новым материалам» (Иваново, 2015).

Работа выполнена в лаборатории физико-химии супрамолекулярных систем Федерального государственного бюджетного учреждения науки Института органической и физической химии им. А.Е. Арбузова Казанского научного центра Российской академии наук (ИОФХ им. А.Е. Арбузова КазНЦ РАН) в соответствии с научным направлением «Научные основы создания новых материалов с заданными свойствами, в том числе высокоточных наноматериалов» (п. 45) в рамках госбюджетной темы 2 «Синтез и закономерности самоорганизации новых функционализированных макроциклов И амфифилов супрамолекулярных тектонов и разработка стратегии их применения в современных нано- и биотехнологиях» (№ гос. регистрации 01201455264). Работа поддержана Программой фундаментальных научных исследований Президиума РАН «Происхождение биосферы и эволюция гео-биологических систем», направление «Физика, химия и биология воды», Российским фондом фундаментальных исследований (проект № 13 -03- 00002).

Публикации Основное содержание работы изложено в 17 публикациях, среди них 6 статей, глава в монографии, тезисы 10 докладов на 4-х Международных и 3-х Всероссийских конференциях.

<u>Объём и структура работы</u> Диссертационная работа состоит из введения, обзора литературы (глава 1), экспериментальной части (глава 2) и тематически разделенного обсуждения результатов (глава 3), выводов, списка цитируемой литературы, приложения. Диссертация изложена на 175 страницах, содержит 12 таблиц, 69 рисунков и список литературы из 231 наименования.

Благодарности Автор выражает благодарность сотрудникам ИОФХ им. А.Е. Арбузова г.н.с. академику РАН А.И. Коновалову, в.н.с. И.С. Рыжкиной, м.н.с. Л.И. Муртазиной, м.н.с. Ю.В. Киселевой, м.н.с. С.Ю. Сергеевой за постоянное внимание, помощь в проведении исследований и поддержку; с.н.с. М.К. Кадирову и м.н.с. А.И. Литвинову за помощь в проведении ЭПР-экспериментов; с.н.с. А.П. Тимошевой за помощь в изучении растворов методами диэлькометрии и поляриметрии; с.н.с. А.В. Черновой за помощь в изучении растворов методами уФ-спектроскопии; м.н.с. А.П. Волошиной за помощь в проведении биологических исследований; в.н.с. А.Н. Кравченко (ИОХ им. Н.Д. Зелинского РАН) за предоставленные гликольурилы; ассистенту Е.Г. Евтушенко за помощь в проведении измерений методом АТН (Химический факультет МГУ им. М.В. Ломоносова); доценту Т.П. Павловой (ФГБОУ ВПО «КНИТУ») за помощь в проведении исследований по биологической очистке сточных вод.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение включает обоснование актуальности работы, формулировку задач диссертационного исследования, краткое описание используемого методологического подхода и достигнутых при его использовании результатов, описание практической значимости и научной новизны работы.

Глава 1 содержит обзор литературы, состоящий из шести разделов. Первый раздел посвящен работам, рассматривающим водные растворы как открытые неравновесные наногетерогенные системы. Во втором разделе кратко рассматриваются основные расчетные

и теоретические модели, описывающие структуру и свойства воды. В третьем и четвертом разделах приводятся экспериментальные доказательства наногетерогенности водных растворов и изменения их структуры и свойств под воздействием химических и физических факторов, в частности, температуры. В пятом разделе рассмотрены особенности и закономерности биологического действия высокоразбавленных растворов химических веществ. Шестой раздел посвящен работам, в которых с позиций самоорганизации дается физико-химическое обоснование немонотонных изменений свойств высокоразбавленных растворов и их биологической активности.

В **Главе 2** приведено описание объектов исследования, изложены методики приготовления и изучения высокоразбавленных растворов и используемые в работе физикохимические методы исследования.

В качестве объектов исследования выбраны два ряда биологически активных веществ (1-11) и поверхностно-активное вещество бромид цетилтриметиламмония (БЦТА, 12), обладающее также бактериостатической активностью. К первому ряду (см. стр. 9) относятся мочевина (1) как структурный фрагмент незамещенного гликольурила (2), алкилированные аналоги гликольурила (3-5) (соединение (4) в виде рацемата), среди которых 2,4,6,8-тетраметилгликольурил (3, транквилизатор мебикар), а также гликольурилы, содержащие фрагмент α -аминокислоты метионина - (*SR*)-Met (6), (*S*)-Met (6а) и (*R*)-Met (66). Ко второму ряду (см. стр. 12) относятся бензойная кислота (7) и ее производные (8-11), среди которых лекарственные препараты салициловая (8), *n*-аминобензойная (9), ацетилсалициловая (10, аспирин), *n*-аминосалициловая (11, ПАСК) кислоты.

Приготовление растворов осуществляли с использованием только свежеперегнанной бидистиллированной воды, в которой анализатором Zetasizer Nano ZS (Malvern Instruments, Великобритания) фиксировалось полное отсутствие частиц. Удельная электропроводность такой воды не превышала 1.5 мкСм·см⁻¹. Растворы готовили методом десятичных вещества $1 \cdot 10^{-2} - 1 \cdot 10^{-3}$ разбавлений ИЗ исходного раствора с концентрацией M. последовательно выдерживая растворы каждой концентрации в течение 20 часов в лабораторных условиях. Изучение влияния внешних низкочастотных электромагнитных полей (ЭМП) на растворы проводилось сопоставлением данных по параметрам частиц и физико-химическим свойствам для двух параллельных серий одного и того же раствора, выдержанных в лабораторных условиях и в трехслойном термообработанном пермаллоевом контейнере, защищающим содержимое от воздействия ЭМП (гипоэлектромагнитные условия). Перед измерением рабочие растворы термостатировали при 25±0,1°С. В бидистиллированной «холостых» опытах с водой, имитирующих процедуру десятичного разбавления растворов, в условиях последовательного эксперимента достоверного образования частиц и изменения физико-химических свойств воды не наблюдалось.

Используемый в работе термин концентрация применительно к высокоразбавленным растворам (1·10⁻¹⁶-1·10⁻⁶ M) означает расчетную концентрацию. Растворы каждой концентрации готовились в пяти образцах, для каждого образца проводились как минимум 3-х кратные измерения. Исследования высокоразбавленных растворов соединений **3**, **6**, **6a**, **8**, **9**, способных к образованию наноассоциатов, проводили в 2-х независимых сериях в течение года.

Рисунок 1. Распределение по размеру наноассоциатов, образующихся в водном растворе 2,4,6,8-тетраметилгликольурила **3** при концентрации 1 · 10⁻⁶ M, 25 °C.

8

Размер (эффективный гидродинамический диаметр кинетически подвижной частицы в максимуме кривой распределения, D) (рисунок 1) и ζ-потенциал (электрический потенциал кинетически подвижной частицы на границе скольжения в постоянном электрическом поле) (рисунок 2) частиц регистрировали методом динамического (ДРС) и электрофоретического рассеяния света (ЭРС) на высокочувствительном анализаторе Zetasizer Nano ZS. Растворы фильтровали через фильтры (Iso-Disc N-25-4 Nylon, 25 мм × 0,45 мкм, Supelco, США). В высокоразбавленных растворах исследованных соединений 3, 6, 6а, 8, 9, 12, способных к самоорганизации, методом ДРС обнаружены частицы размером в сотни нм при интенсивности светорассеяния 100-80 % (ИПД 0,2-0,6), что свидетельствует о возможности описания совокупности размеров частиц в реальной системе с помощью усредненного диаметра (D) и построения зависимостей D от разбавления и температуры раствора.

Образование частиц диаметром в сотни нм в растворах подтверждено высокоразбавленных методом анализа траектории наночастиц (АТН) (анализатор «Nanosight LM 10», «NanoSight», Великобритания), позволяющим также определять число частиц в 1 мл раствора и визуализировать их. В качестве примера на рисунке 3 приведено изображение частиц (а) и распределение количества частиц по размерам (б), полученное для раствора БЦТА. При концентрации 1.10-7 М количество частиц в 1 мл раствора равно 3·10⁸, средний диаметр составляет 120 нм.

Удельная электропроводность растворов измерялась на кондуктометре inoLab Cond Level 1 (WTW), pH – на ионометре inoLab pH 720 (WTW). Время корреляции вращательной диффузии (ткор) метки ТЕМПО рассчитывалось из спектров ЭПР (Elexsys E500, Brucker).

Статистическая обработка результатов производилась методом параметрической статистики с помощью компьютерных программ Microsoft Excel и OriginLab 6.0 при статистической надежности 95%. Полученные для каждой концентрации средние значения параметров частиц и физико-химических свойств с указанием доверительного интервала легли в основу

Рисунок 4. Зависимость *D* частиц (1, 2) и рН (3) раствора 3, выдержанных на лабораторном столе (1) и в контейнере (2), от концентрации.

Рисунок 3. Изучение методом АТН БЦТА растворов при концентрации 1.10⁻⁷ М: а) изображение частиц (уровень камеры 16); б) гистограмма распределения количества частиц по размерам.

Рисунок 5. Зависимость ζ-потенциала (1) частиц и удельной электропроводности (χ) (2) раствора 3 от концентрации.

a

построения соответствующих концентрационных, как показано, например, на рисунках 4 и 5, и температурных зависимостей. Ошибки измерения параметров частиц и физико-химических свойств растворов лежали в интервале 2- 20 %.

Глава 3 Самоорганизация и свойства высокоразбавленных водных растворов производных гликольурила и бензойной кислоты: влияние температуры и строения веществ

3.1 Изучение влияния гипоэлектромагнитных условий и строения растворенного вещества на самоорганизацию и физико-химические свойства высокоразбавленных водных растворов производных гликольурила и бензойной кислоты

Изучение водных растворов 1-5 методом ДРС показало, что картина распределения частиц по размерам индивидуальна для растворов каждого соединения, а способность растворов 2-5 к самоорганизации в значительной степени зависит от строения и числа алкильных заместителей у атомов азота гликольурила, изменяющих гидрофобность и стерические свойства молекул.

В растворах мочевины **1** в интервале концентраций $1 \cdot 10^{-5} - 1 \cdot 10^{-1}$ М образуются стабильные во времени частицы, средний гидродинамический диаметр которых лежит в интервале 110-200 нм. В растворах гликольурила **2**, у которого отсутствуют алкильные заместители, а также **5**, содержащего четыре этильных радикала, методом ДРС во всем изученном интервале расчетных концентраций $1 \cdot 10^{-16} - 1 \cdot 10^{-1}$ М достоверно определить наличие частиц не удалось. Оптимальным с точки зрения самоорганизации растворов оказался гликольурил **3** (рисунок 6) и в меньшей степени **4**. В растворах **3** структуры размером в сотни нм образуются в широкой области $1 \cdot 10^{-16} - 1 \cdot 10^{-3}$ М (рисунок 6, I, *a-g*), в то время как в растворах **4** только в интервалах $1 \cdot 10^{-16} - 1 \cdot 10^{-1}$ и $1 \cdot 10^{-4} - 1 \cdot 10^{-2}$ М, в интервале $1 \cdot 10^{-10} - 1 \cdot 10^{-5}$ М частицы не обнаружены («зона молчания»). Исследование растворов **1**, **3** и **4**, выдержанных в гипоэлектромагнитных условиях, выявило пороговую концентрацию (с_п), которая для растворов **1** и **3** составляет $1 \cdot 10^{-5}$ М (рисунок 6, II, *f*, *h*), а для растворов **4** - $1 \cdot 10^{-4}$ М.

Таким образом, исследование методом ДРС растворов, выдержанных в естественных и гипоэлектромагнитных условиях, позволило установить, что наноассоциаты образуются в растворах **3** и **4** в интервалах $1 \cdot 10^{-16} - 1 \cdot 10^{-6}$ М, $1 \cdot 10^{-16} - 1 \cdot 10^{-11}$ М соответственно.

Сравнительное изучение удельной электропроводности (χ) растворов **1-5** (рисунок 7), показало, что для **3**, **4** в интервале расчетных концентраций $1 \cdot 10^{-16} - 1 \cdot 10^{-10}$ M, в которых образуются наноассоциаты, наблюдаются четко выраженные немонотонные концентрационные зависимости χ (рисунок 7, кривые 3, 4). В растворах **2** и **5**, в которых наноассоциаты отсутствуют, в аналогичном интервале концентраций значение χ (рисунок 7, кривые 2, 5) близко к значению растворителя – воды (около 3 мкСм·см⁻¹).

На рисунках 4 и 5 приведены совместные зависимости параметров наноассоциатов (D и ζ -потенциал), образующихся в растворах наиболее способного к самоорганизации гликольурила **3**, а также физико-химических свойств растворов **3** - рН и удельной электропроводности. Немонотонные концентрационные зависимости ζ -потенциала наноассоциатов и χ растворов (рисунок 5) взаимосвязаны: экстремумы на обеих зависимостях наблюдаются при одних и тех же концентрациях $1 \cdot 10^{-15} - 1 \cdot 10^{-14}$ М, $1 \cdot 10^{-10}$ М и $1 \cdot 10^{-7}$ М. Следовательно, появление максимальных значений χ (около 7 мкСм·см⁻¹) при концентрациях $1 \cdot 10^{-15} - 1 \cdot 10^{-14}$

М, 1·10⁻¹⁰ М обусловлено главным образом формированием в этих интервалах концентраций наноассоциатов с высокими значениями ζ-потенциала (-12 мВ и -6 мВ соответственно).

Рисунок 6. Распределение частиц по размерам в водных растворах тетраметилгликольурила 3, выдержанных на лабораторном столе (I) и в пермаллоевом контейнере (II) при концентрациях $1 \cdot 10^{-1}$ (*a*, *b*), $1 \cdot 10^{-3}$ (*c*, *d*), $1 \cdot 10^{-6}$ (*e*, *f*), $1 \cdot 10^{-16}$ M (*g*, *h*), 25 °C. Здесь и далее распределение частиц по размерам приведено в координатах размера частиц (нм) и интенсивности (%) рассеяния света.

Изучение зависимостей D наноассоциатов и рН раствора 3 (рисунок установить, 4) позволило что ход зависимостей идентичен в широком интервале концентраций $1 \cdot 10^{-16} - 1 \cdot 10^{-4}$ М. В интервале 1·10⁻¹⁶-1·10⁻¹⁰ М взаимосвязь становится еще более тесной (r=0.845, р=0.04). Это может указывать на то, что перестройка наноассоциатов происходит с участием ионов гидроксония и гидроксидструктур образующих ионов воды, наноассоциаты, и молекул «объемной» воды.

Рисунок 7. Зависимость удельной электропроводности растворов мочевины (1), гликольурила 2 (2), 3 (3), 4 (4), 5 (5), выдержанных на лабораторном столе, от концентрации, 25°C. Здесь И далее пунктирной линией обозначена пороговая концентрация (сп).

Таким образом, В $(1 \cdot 10^{-16} - 1 \cdot 10^{-6})$ высокоразбавленных M) растворах 3 впервые установлена тесная взаимосвязь между параметрами наноассоциатов и физико-химическими свойствами растворов: концентрационные зависимости И С-потенциала размера наноассоциатов носят немонотонный характер, симбатный зависимостям рН и у растворов.

Для ответа на вопрос, влияют ли тонкие различия в пространственном строении растворенного вещества на самоорганизацию высокоразбавленных растворов, изучены растворы нейротропно активных гликольурилов **6**, **6а**, **6б**, содержащих фрагмент α-

аминокислоты метионина - рацемата (SR)-Меt и энантиомерно чистых диастереомеров (S)-Меt, (R)-Меt соответственно.

Рисунок 8. Распределение частиц по размерам в водных растворах **6а** при концентрации $7 \cdot 10^{-2}$ (*a*), $1 \cdot 10^{-2}$ (*b*), $1 \cdot 10^{-4}$ (*c*), $1 \cdot 10^{-11}$ (*d*) M, выдержанных на лабораторном столе, 25 °C.

Рисунок 9. Зависимость удельной электропроводности водных растворов **6a** (1), **6б** (2) от концентрации, 25 °C. На вставке – зависимость удельной электропроводности и рН растворов **6б**, 25 °C.

Изучение растворов **6**, **6a**, **6б** методом ДРС в широкой области расчетных концентраций $7 \cdot 10^{-2} \cdot 10^{-18}$ М показало, что по мере разбавления в растворах этих соединений образуются различающиеся по природе и размерам частицы. При концентрации $7 \cdot 10^{-2}$ М в растворах **6**, **6a**, **6б**, выдержанных в естественных условиях, присутствуют практически только частицы размером около 1 нм, представляющие собой, вероятно, гидратированные молекулы или небольшие агрегаты вещества (рисунок 8, *a*), что согласуется с данными, полученными при изучении растворов **3** (рисунок 6, I, *a*).

В интервале концентраций $1 \cdot 10^{-2} \cdot 1 \cdot 10^{-4}$ М в растворах **6**, **6а**, **6б** наряду с частицами небольшого размера формируются супрамолекулярные домены (200-300 нм) (рисунок 8, *b*, *c*), образование которых происходит независимо от наличия внешних ЭМП. Ниже с_п, составляющей для растворов этих соединений $1 \cdot 10^{-4}$ М, наблюдаются драматические различия в самоорганизации растворов. В растворах **6а** с (*S*)-Меt фрагментом в области концентраций от $1 \cdot 10^{-5}$ до $1 \cdot 10^{-15}$ М образуются наноассоциаты, размер которых в зависимости от концентрации лежит в интервале 220-400 нм (рисунок 8, *d*). В растворе рацемата **6** образование наноассоциатов происходит только до $1 \cdot 10^{-9}$ М. В растворах **66** с фрагментом (*R*)-Меt, начиная с концентрации $1 \cdot 10^{-5}$ М, т.е. ниже с_п, частицы методом ДРС не определяются.

Анализ зависимости χ растворов **6a** показал, что ниже с_п в интервале $1 \cdot 10^{-15}$ - $1 \cdot 10^{-5}$ М (рисунок 9, кривая *1*) ход зависимостей носит выраженный немонотонный характер, что объясняется способностью растворов этого соединения в указанном интервале расчетных концентраций к образованию наноассоциатов.

Ярким доказательством того, что возникновение немонотонных зависимостей физикохимических свойств высокоразбавленных растворов обусловлено формированием и перестройкой наноассоциатов, является вид зависимостей χ и pH растворов **66** (рисунок 9, кривая 2 и вставка), в которых наноассоциаты не образуются. В отличие от растворов **6a**, для которых, например, значения χ при 1·10⁻¹³, 1·10⁻¹⁰ и 1·10⁻⁷ M составляют 10, 7 и 6 мкСм⁻¹ (рисунок 9, кривая 1), в растворах **66** с фрагментом (*R*)-Меt ниже с_п значения χ и pH практически неотличимы от значений дистиллированной воды - 3 мкСм·см⁻¹ и 6 ед. рН (рисунок 9, вставка).

Таким образом, при изучении влияния пространственного строения гликольурилов, солержаших фрагменты (S)-Met И (R)-Met, на самоорганизацию И свойства высокоразбавленных водных растворов, выдержанных естественных в И гипоэлектромагнитных условиях, впервые показано, что способность к самоорганизации с образованием наноассоциатов и, как следствие, возникновение немонотонных зависимостей физико-химических свойств растворов существенным образом зависит от конфигурации энантиомеров метионина. Растворы гликольурилов с фрагментом (S)-Меt представляют собой дисперсные системы, в которых в интервале $1 \cdot 10^{-15} - 1 \cdot 10^{-2}$ М формируются наноассоциаты, а в высокоразбавленных растворах гликольурилов с фрагментом (*R*)-Меt способность к самоорганизации отсутствует. Обнаруженное дифференцированное влияние (S)- и (R)-фрагментов метионина на самоорганизацию и свойства высокоразбавленных растворов производных гликольурилов может быть полезным для анализа важнейших явлений в живой природе, которые связаны с функциональной специализацией энантиомеров аминокислот.

Ко второму ряду БАВ, выбранных для установления взаимосвязи самоорганизации и свойств высокоразбавленных растворов, относятся бензойная кислота (7) и ее производные (8-11), среди которых лекарственные препараты салициловая (8, СК), *n*-аминобензойная (9, ПАБК), ацетилсалициловая (10, аспирин), *n*-аминосалициловая (11, ПАСК) кислоты.

Изучение высокоразбавленных растворов бензойной кислоты 7 и её производных 8-11 методом ДРС показало (рисунок 10), что способность растворов 7-11 к самоорганизации существенно зависит от числа гидрофильных заместителей в гидрофобном ароматическом кольце, вероятно, придающих в той или иной степени амфифильные свойства этим соединениям.

В растворах бензойной кислоты 7, а также в растворах её структурного аналога 11, содержащего не только полярную карбоксильную группу, но и еще два гидрофильных заместителя - гидроксильную и аминогруппу - методом ДРС во всем изученном интервале расчетных концентраций 1·10⁻¹⁷-1·10⁻² М определить наличие частиц не удалось. Оптимальными с точки зрения самоорганизации растворов в случае производных 7 оказались растворы СК 8 и ПАБК 9 (рисунок 10, А, Б-І), содержащих кроме карбоксильной группы по одному гидрофильному заместителю, и в гораздо меньшей степени растворы 10 с ацетильной группой, повышающей гидрофобность вещества. В растворах СК 8 структуры размером в сотни ни образуются в области $1 \cdot 10^{-12} - 1 \cdot 10^{-2}$ М (рисунок 10, A, *a-g*), в растворах ПАБК 9 в области $1 \cdot 10^{-10} - 1 \cdot 10^{-4}$ (рисунок 10, Б-І, *e*, *h*), в то время как в растворах 10 только в интервале $1 \cdot 10^{-9} - 1 \cdot 10^{-12}$ М. В интервале $1 \cdot 10^{-8} - 1 \cdot 10^{-5}$ М в растворах 10 частицы не («зона молчания»). Исследование растворов определяются 8. выдержанных в гипоэлектромагнитных условиях, выявило с_п, которая составляет 1·10⁻⁷ М. При изучении в аналогичных условиях растворов **9** (рисунок 10, Б-II) установлено, что в области концентраций $1 \cdot 10^{-4} - 1 \cdot 10^{-3}$ М экранирование не влияет на самоорганизацию растворов **9**.

При концентрации ПАБК $1 \cdot 10^{-5}$ М (рисунок 10 *f*) данные по ДРС становятся менее достоверными, а при C< $1 \cdot 10^{-5}$ М частицы не обнаруживаются. Однако ход

концентрационной зависимости χ (рисунок 11, кривая 2) имеет немонотонный характер вплоть до $1 \cdot 10^{-6}$ М.

Рисунок 10. Распределение частиц по размерам в водных растворах СК 8, ПАБК 9, выдержанных на лабораторном столе (A, Б-I) и в пермаллоевом контейнере (Б-II), с концентрациями 8 (A) - $1 \cdot 10^{-2}$ (a), $1 \cdot 10^{-7}$ (d), $1 \cdot 10^{-11}$ M (g); 9 (Б-I и Б-II) - $1 \cdot 10^{-3}$ (b, c), $1 \cdot 10^{-5}$ (e, f), $1 \cdot 10^{-10}$ M (h, i), 25°C.

Так как немонотонное изменение физикосвойств свидетельствухимических структурных изменений в ет о наличии образование растворе, то, вероятно, 1.10^{-6} M. происходит до наноассоциатов Следовательно, совокупность данных по ДРС и кондуктометрии дает основание считать, что для растворов 9 с_п составляет 1·10⁻⁶ М. В интервале $1.10^{-10} - 1.10^{-7}$ М значения γ растворов 9, выдержанных в пермаллоевом контейнере, практически соответствуют χ воды (рисунок 11, кривая 2).

Итак, исследование растворов, выдержанных в естественных и гипоэлектромагнитных условиях, позволило установить, что в растворах СК 8 и ПАБК 9наноассоциаты образуются в интервалах $1\cdot 10^{-12}$ - $1\cdot 10^{-8}$ М и $1\cdot 10^{-10}$ - $1\cdot 10^{-8}$ М соответственно.

Рисунок 11. Зависимость удельной электропроводности (χ) растворов ПАБК 9, выдержанных на лабораторном столе (1) и в пермаллоевом контейнере (2), от концентрации, 25 °C.

Рисунок 12. Зависимость удельной электропроводности (χ) растворов 7 (*1*), 8 (2), 9 (3), 10 (4), 11 (5), выдержанных на лабораторном столе, от концентрации, 25 °C.

Сравнительное изучение зависимостей у растворов 7-11 показало, что для растворов СК 8 и ПАБК 9, в которых наноассоциаты образуются, наблюдаются ярко выраженные немонотонные зависимости (рисунок 12, кривые 2 и 3). В растворах 7, 11, где способность к образованию наноассоциатов отсут ствует или выражена очень слабо (10), близко значению значение χ к растворителя — воды (рисунок 12, кривые 1, 5, 4).

Таким образом, изучение влияния гипоэлектромагнитных условий и строения растворенного вещества на самоорганизацию и физико-химические свойства высокоразбавленных водных растворов производных гликольурила

и бензойной кислоты позволило впервые показать, что гидрофобные и гидрофильные свойства заместителей, а также тонкие различия в пространственном строении веществ образом способность высокоразбавленных растворов коренным влияют на К самоорганизации с образованием наноассоциатов. Ниже с_п, лежащей в интервале $1 \cdot 10^{-7} - 1 \cdot 10^{-4}$ M. растворах 2,4,6,8-тетраметилгликольурила, 2,6-диметил-4,8в диэтилгликольурила (рацемата), гликольурила с фрагментами (S)-метионина (энантиомерно чистый диастереомер) и (SR)-метионина (рацемат), 2-гидроксибензойной, 4-аминобензойной кислот, выдержанных в естественных условиях, образуются наноассоциаты, вследствие чего наблюдаются немонотонные зависимости физико-химических свойств растворов. В разбавленных растворах этих соединений, выдержанных в гипоэлектромагнитных условиях, а также в растворах незамещенного гликольурила, 2,4,6,8-тетраэтилгликольурила, гликольурила с фрагментами (*R*)-метионина (энантиомерно чистый диастереомер), бензойной, 4-амино-2-гидроксибензойной кислот, выдержанных в естественных условиях, способность к образованию наноассоциатов отсутствует, физико-химические свойства разбавленных растворов этих соединений практически соответствуют свойствам растворителя - дистиллированной воды.

3.2 Изучение влияния температуры в интервале 25-45 °C на способность к самоорганизации высокоразбавленных растворов 4-аминобензойной кислоты и бромида цетилтриметиламмония

Для изучения влияния физиологически важных температур на способность к самоорганизации высокоразбавленных растворов нами выбраны растворы веществ широкого спектра применения - природного биологически активного вещества (4-аминобензойная кислота, ПАБК, 9) и синтетического поверхностно-активного вещества, обладающего бактериостатической активностью (бромид цетилтриметиламмония, БЦТА, 12). Высокоразбавленные растворы 9 и 12 способны к образованию наноассоциатов в интервале расчетных концентраций 1.10⁻¹⁰-1.10⁻⁸ М и 1.10⁻¹²-1.10⁻⁶ М соответственно.

Влияние температуры на самоорганизацию изучено для растворов ПАБК с концентрациями $1 \cdot 10^{-3}$ и $1 \cdot 10^{-10}$ М, в которых образуются агрегаты вещества и наноассоциаты (рисунок 10, *b*, *h*). Для раствора с концентрацией $1 \cdot 10^{-3}$ М установлено, что повышение температуры от 30 до 45 °C приводит к разрушению агрегатов, образующихся при 25 °C. Для раствора с концентрацией $1 \cdot 10^{-10}$ М удалось проанализировать зависимость размера наноассоциатов от температуры в интервале 25-40 °C.

Рисунок 13. Распределение частиц по размерам в растворах *n*-аминобензойной кислоты 9 $(1 \cdot 10^{-10} \text{ M})$, выдержанных в естественных условиях при 25 (1), 30 (2), 37 (3) и 40 °C (4).

Распределение частиц по размерам носит мономодальный характер при 25, 30, 40 °C, при 37 °C оно становится бимодальным - наряду с частицами размером в сотни нм обнаруживаются частицы с диаметром ~8 нм (рисунок 13, 3). При T \geq 42°C частиц в растворе найти не удалось. Размер наноассоциатов при 40 25. 30. 37. °C изменяется немонотонно, составляя 130, 320, 230 и 100 нм соответственно. В работе /D. Hagmeyer et al. RSC Adv.-2012.-no.2.-Р.4690-4696/ методом АТН показано, что в растворах α-аминокислот в интервале температур от 20 до 50 °C также наблюдается немонотонный рост И снижение диаметра кластеров от 200 до 100 нм, коррелирующее с уменьшением и увеличением их количества.

Повышение температуры сказывается и на физико-химических

свойствах растворов ПАБК. При концентрации $1 \cdot 10^{-3}$ М увеличение температуры сопровождается ростом χ от 28 до 42 мкСм·см⁻¹, что, вероятно, связано с разрушением агрегатов, как показано методом ДРС, и увеличением количества частиц. Дальнейшее нагревание приводит к падению χ до 36 мкСм·см⁻¹, максимум χ регистрируется при 35 °C. При концентрации раствора $1 \cdot 10^{-10}$ М χ немонотонно изменяется в небольшом интервале от 3 до 7 мкСм·см⁻¹ с экстремумами при 30, 37 и 40 °C. С учетом данных о взаимосвязи размера и количества кластеров в растворах α -аминокислот и результатов по изучению размера наноассоциатов, представленных на рисунке 13, немонотонную температурную зависимость χ растворов ПАБК можно объяснить следующим образом. Увеличение диаметра наноассоциатов от 130 до 320 нм с ростом температуры от 25 до 30 °C, по-видимому, сопровождается снижением их количества, что и обусловливает уменьшение χ раствора от 5,5 до 3,2 мкСм·см⁻¹. Дальнейший рост температуры до 37 °C связан с уменьшением размера наноассоциатов до 230 нм, т.е. ростом их числа, и появлением частиц небольшого размера (рисунок 13, 3), что приводит к увеличению χ до 7 мкСм·см⁻¹.

Ранее установлены тесные корреляции между изменениями χ растворов и параметров наноассоциатов, происходящими в ходе их концентрационных перестроек /Коновалов А.И., Рыжкина И.С.// Изв.АН. Сер.хим., 2014, №1, 1-14/. Сравнение данных ДРС (рисунок 13) и кондуктометрии растворов ПАБК с концентрацией $1 \cdot 10^{-10}$ М дает основание считать, что температурные перестройки наноассоциатов также обуславливают немонотонные изменения свойств растворов.

Для более детального доказательства этого положения изучено влияние температуры в интервале 25-45 °С на способность к самоорганизации высокоразбавленных растворов БЦТА. Известно, что при температуре 25 °С в растворах БЦТА в широкой области концентраций $(1 \cdot 10^{-2} - 1 \cdot 10^{-12} \text{ M})$ образуются мицеллы (выше $8 \cdot 10^{-4} \text{ M}$), домены $(1 \cdot 10^{-2} - 1 \cdot 10^{-5} \text{ M})$ и наноассоциаты $(1 \cdot 10^{-6} - 1 \cdot 10^{-12} \text{ M})$, с_п составляет $1 \cdot 10^{-5} \text{ M}$. Анализ концентрационных зависимостей размеров, ζ -потенциала супрамолекулярных доменов и наноассоциатов, а также χ растворов БЦТА, найденных при 25 °С, показал, что экстремальные изменения параметров доменов и наноассоциатов и физико-химических свойств растворов наблюдаются при концентрациях $1 \cdot 10^{-3}$, $1 \cdot 10^{-4}$, $1 \cdot 10^{-7}$ и $1 \cdot 10^{-9}$ M (рисунок 14).

Эти концентрации были выбраны нами для изучения влияния температуры на параметры доменов и наноассоциатов и свойства растворов БЦТА.

При концентрациях $1 \cdot 10^{-3}$ и $1 \cdot 10^{-4}$ вид распределения частиц по размерам в интервале температур 25-45 °C не меняется . В растворах с концентрацией $1 \cdot 10^{-3}$ М в интервале 25-45 °C наблюдается образование мицелл размером около 4 нм и супрамолекулярных доменов размером в сотни нанометров, а при $1 \cdot 10^{-4}$ М – только супрамолекулярных доменов (рисунок 15 *a-c*).

В растворах БЦТА с концентрациями $1 \cdot 10^{-7}$ и $1 \cdot 10^{-9}$ М при температурах 30-45 °C в отличие от 25 °C нарушается мономодальное распределение частиц по размерам с появлением раздельных максимумов на кривых ДРС (рисунок 15 *e* (37° C) и *f* (45° C)),

Рисунок 14. Зависимость размера (D) (1, 2) частиц и удельной электропроводности (χ) (3) раствора БЦТА 12 от концентрации при 25 (1, 3) и 40 °C (2).

свидетельствующих о сосуществовании в растворе частиц различного размера и природы. Структуры размером в сотни нм, представляющие собой наноассоциаты, по интенсивности светорассеяния доминируют, составляя 70 – 80 %.

Рисунок 15. Распределение частиц по размерам в водных растворах БЦТА с концентрациями $1 \cdot 10^{-4}$ (*a*- *c*), $1 \cdot 10^{-9}$ M (*d*- *f*) при 25 (*a*, *d*), 37 (*b*, *e*) и 45 °C (*c*, *f*).

Температурные зависимости размеров структур в сотни нм, доминирующих по интенсивности рассеяния света, приведены на рисунке 16. Как видно, размеры доменов и наноассоциатов, образующихся при концентрациях $1 \cdot 10^{-3}$, $1 \cdot 10^{-4}$ и $1 \cdot 10^{-9}$ М (рисунок 16, кривые *1*, *2*, *4*), изменяются в зависимости от температуры немонотонно и специфически для каждой концентрации с экстремальными значениями в области 30, 37 и 40 °C. При концентрации $1 \cdot 10^{-7}$ М наблюдается незначительное плавное снижение размера наноассоциатов с ростом температуры до 40 °C, выше которой размеры не изменяются (рисунок 16, кривая *3*).

Рисунок 16. Температурные зависимости размера (*D*) частиц, образующихся в растворах БЦТА с концентрациями $1 \cdot 10^{-3}$ (*I*), $1 \cdot 10^{-4}$ (*2*), $1 \cdot 10^{-7}$ (*3*), $1 \cdot 10^{-9}$ М (*4*).

Анализ температурных зависимостей размеров доменов, образующихся при достаточно высокой концентрации 1.10^{-3} М (рисунок 16, кривая *I*), а также доменов и наноассоциатов, формирующихся в областях концентраций 1·10⁻⁴ и 1.10^{-9} M (рисунок 16, кривые 2 и 4), показывает. что ход зависимостей в первом и во втором случаях носит противоположный характер с наиболее выраженным экстремумом при 37 °С. Вероятно, это связано с различной природой доменов, образующихся В разных концентрационных областях. Разбавление раствора приводит к увеличению структурированной доли воды в составе доменов И наноассоциатов, которая, вероятно, и

обусловливает их поведение, что особенно справедливо для наноассоциатов, образующихся при $1 \cdot 10^{-9}$ М. Именно для растворов в этой концентрации получен наиболее резко выраженный и сложный вид температурной зависимости размера наноассоциатов с минимумом при 30 °C (100 нм) и максимумом при 37 °C (350 нм) (рисунок 16, кривая 4). При 25 °C для этой концентрации наблюдаются экстремальные значения размера наноассоциатов и физико-химических свойств раствора (рисунок 14, кривые *1* и *3*).

Рисунок 17. Температурные зависимости ζ -потенциала частиц, образующихся в растворах БЦТА с концентрациями $1 \cdot 10^{-4}$ (*I*), $1 \cdot 10^{-7}$ (*2*), $1 \cdot 10^{-9}$ М (*3*).

Рисунок 18. Температурные зависимости удельной электропроводности раствора БЦТА с концентрацией $1 \cdot 10^{-4}$ (*1*), $1 \cdot 10^{-7}$ (*2*) и $1 \cdot 10^{-9}$ М (*3*).

На рисунке 14 (кривые 1 и 2) приведены концентрационные зависимости размера доменов и наноассоиатов при 25 и 40 °C, из которых видно, что ход зависимостей доменов и наноассоциатов при обеих температурах имеет сходный вид с экстремумами при $1\cdot 10^{-3}$, $1\cdot 10^{-4}$, $1\cdot 10^{-7}$ и $1\cdot 10^{-9}$ М.

Температурные зависимости ζ -потенциала доменов, образующихся при $1 \cdot 10^{-4}$ M (рисунок 17, кривая *1*) и наноассоциатов, формирующихся при $1 \cdot 10^{-7}$ и $1 \cdot 10^{-9}$ M (рисунок 17 кривые 2, 3), как и зависимости их размера (рисунок 16), изменяются немонотонно с экстремумами при 30, 37 и 40 °C. С учетом положительного знака ζ -потенциала доменов и отрицательного наноассоциатов, ход зависимостей (рисунок 17, кривые *1-3*) до 35 °C

аналогичен с минимумом при 30 °C. Смена знака ζ-потенциала доменов и наноассоциатов положительный заряд доменов объясняется тем. что определяется катионами цетилтриметиламмония, входящими в их состав, а отрицательный знак заряда наноассоциатов - структурами воды, формирующими наноассоциат. Значения ζ-потенциала доменов, образующихся при $1 \cdot 10^{-4}$, т.е. на порядок выше с_п ($1 \cdot 10^{-5}$ M), лежат в интервале от +25 до +2 мВ с минимумами при 30 и 40 °С и максимумом при 37 °С (рисунок 17, кривая *I*). ζ-Потенциал наноассоциатов, образующихся при 1·10⁻⁷ и 1·10⁻⁹ М, т.е. на несколько порядков ниже c_{π} , изменяется от -10 до -1 мВ с минимумом при 30 °C, а для $1 \cdot 10^{-9}$ М еще и с максимумом при 40 °С (рисунок 17, кривые 2, 3).

Температурные зависимости удельной электропроводности (χ) растворов при 1·10⁻⁴, 1·10⁻⁷ и 1·10⁻⁹ М до 35°С (рисунок 18, кривые *1-3*), так же как и зависимости ζ-потенциала (рисунок 17 кривые *1-3*), практически симбатны с четко выраженным минимумом при 30 °С и небольшими экстремумами при 37 и 40 °С. Это свидетельствует о том, что температурные перестройки доменов и наноассоциатов в интервале 25–45 °С (рисунки 16 и 17), сопровождающиеся немонотонным изменением размера и ζ-потенциала с экстремумами при 30, 37 и 40 °С, обусловливают изменения удельной электропроводности разбавленных растворов БЦТА с ростом температуры.

Рисунок 19. Температурная зависимость времени корреляции вращательной диффузии ($\tau_{кор}$) зонда ТЕМПО в Аррениусовых координатах при концентрациях БЦТА в растворах, равных $1 \cdot 10^{-3}$ (*a*), $1 \cdot 10^{-9}$ M (*b*).

Методом ЭПР спиновых зондов изучено влияния температуры в интервале 25–45 °C на время вращательной корреляции ($\tau_{\text{кор}}$) зонда ТЕМПО (5·10⁻⁴ M) в растворах БЦТА при 1·10⁻³, 1·10⁻⁴, 1·10⁻⁷, 1·10⁻⁹ М. При солюбилазции зонда в наноразмерных структурах изменение ЭПР-спектра позволяет оценить степень ограниченности движения зонда и микровязкость структуры в зоне локализации метки.

На рисунке 19 (*a*, *b*) в качестве примера приведены температурные зависимости $\tau_{\text{кор}}$ в Аррениусовых координатах растворов с концентрациями 1.10⁻³ М и 1.10⁻⁹ М, при которых образуются домены и наноассоциаты соответственно. Как видно, на зависимости $\tau_{\text{кор}}$ имеется участками, несколько точек излома между линеаризованными соответствующих температурам, при которых, вероятно, происходят термоиндуцированные изменения структуры доменов и наноассоциатов. Точками излома считали точки на пересечении линеаризованных участков с коэффициентом корреляции Пирсона (r), лежащим в интервале 0,99-0,96, за исключением концентрации $1\cdot 10^{-9}$ M, где r изменялся от 0,96 до 0,60. В интервале температур 35-42 °C, включающем температуры 37 и 40 °C, для всех изученных концентраций наблюдается снижение значений r, наиболее заметное для $1 \cdot 10^{-4}$ (r=0,66) и 1·10⁻⁹ М (r=0,50). Это означает, что в указанном интервале физиологически важных температур т_{кор}, характеризующее микровязкость доменов и наноассоциатов, в меньшей

степени зависит от изменения температуры. Кроме упомянутого выше интервала 35-42 °C для растворов с концентрациями $1 \cdot 10^{-3}$ и $1 \cdot 10^{-9}$ М точки излома присутствует в интервале 27-32 °C, включающем 30 °C.

Сравнение температурных зависимостей $\tau_{\text{кор}}$, а также зависимостей размера и ζ потенциала доменов и наноассоциатов (рисунок 16 и 17), полученных методами ЭРС и ДРС, свидетельствует об аналогии температур, при которых наблюдаются изломы на зависимости $\tau_{\text{кор}}$ и экстремальные изменения параметров доменов и наноассоциатов в растворах БЦТА при 30, 37 и 40 °C.

Таким образом, комплексом физико-химических методов показано, что разбавленные растворы БЦТА и ПАБК в интервале концентраций $1 \cdot 10^{-12} - 1 \cdot 10^{-3}$ М и температур 25-45 °C представляют собой самоорганизованные наногетерогенные дисперсные системы, претерпевающие по мере увеличения температуры структурные перестройки в области 30, 37, 40 °C, что отражается на немонотонных температурых зависимостях параметров доменов ($1 \cdot 10^{-4}$, $1 \cdot 10^{-3}$ М) и наноассоциатов ($1 \cdot 10^{-10}$, $1 \cdot 10^{-9}$, $1 \cdot 10^{-7}$ М), удельной электропроводности растворов, а также обусловливает немонотонные температурные зависимости времени вращательной корреляции зонда ТЕМПО, характеризующего микровязкость доменов и наноассоциатов.

3.3 Взаимосвязь самоорганизации, физико-химических и биологических свойств высокоразбавленных растворов некоторых биологически активных веществ

Ранее найдено, что формирование и концентрационные перестройки наноассоциатов могут обуславливать не только физико-химические, но и биологические свойства высокоразбавленных растворов некоторых БАВ. На основе обнаруженной корреляция между самоорганизацией и биологической активностью показана возможность прогнозирования биоэффектов высокоразбавленных растворов /Коновалов А.И., Рыжкина И.С.//Изв.АН. Сер.хим., 2014, №1, 1-14/. В нашей работе с целью установления взаимосвязи между самоорганизацией, физико-химическими свойствами и биоэффектами разбавленных растворов целенаправленно изучена биологическая активность растворов СК 8, ПАБК 9 и БЦТА 12 в интервалах расчетных концентраций, в которых обнаружены немонотонные изменения параметров наноассоциатов и свойств растворов.

Разбавленные растворы СК и ПАБК исследованы в качестве биорегуляторов, стимулирующих микробиоценоз активного ила, используемого для биоочистки сточных вод (рисунок 20 и 21). Индикатором очистки сточной воды служит параметр «химическое потребление кислорода» (ХПК). ХПК отражает количество кислорода, необходимое для полного окисления содержащихся в воде органических и неорганических веществ биоценозом активного ила, значения ХПК связаны прямо пропорциональной зависимостью с загрязнением сточной воды (СВ).

Воздействие растворов ПАБК на процесс очистки CB в изученном интервале концентраций носит немонотонный характер (рисунок 20, кривая *1*). На зависимости можно выделить три области: $1 \cdot 10^{-5} - 1 \cdot 10^{-4}$ M, $1 \cdot 10^{-8} - 1 \cdot 10^{-6}$ M, $1 \cdot 10^{-11} - 1 \cdot 10^{-8}$ M. При добавлении раствора с концентрацией $1 \cdot 10^{-5} - 1 \cdot 10^{-4}$ M наблюдается интенсификация очистки CB, обозначенная на рисунке 20 знаком «+». Это связано с тем, что **9** является фактором роста для многих видов бактерий, а активный ил представляет собой биоценоз зоогенных скоплений бактерий и простейших организмов, которые участвуют в очистке CB. С уменьшением концентрации раствора наблюдается закономерное ухудшение процесса очистки. При пороговой концентрации $1 \cdot 10^{-6}$ M зависимость ХПК практически выходит на контроль. При концентрациях $1 \cdot 10^{-11} - 1 \cdot 10^{-8}$ M снова наблюдается интенсификация очистки CB с максимумом при $1 \cdot 10^{-10}$ M.

Как показано в разделе 3.1. (рисунок 13, кривая 1), в растворах ПАБК в области концентраций $1 \cdot 10^{-10} - 1 \cdot 10^{-8}$ М образуются наноассоциаты. Сопоставление зависимостей ХПК и χ (рисунок 20) водных растворов ПАБК указывает на их взаимосвязь: изменения χ и

ХПК происходят симбатно с экстремумами в одних и тех же областях концентраций $1 \cdot 10^{-5} - 1 \cdot 10^{-4}$ М, $1 \cdot 10^{-8} - 1 \cdot 10^{-6}$ М, $1 \cdot 10^{-10} - 1 \cdot 10^{-9}$ М.

Рисунок 20. Зависимость ХПК (1) сточной воды в присутствии растворов *п*-аминобензойной кислоты 9 к 4 часу исследования и удельной электропроводности (2) водных растворов 9 от концентрации, 3 – значение ХПК в контрольном образце, 25 °C.

Рисунок 21. Зависимость ХПК (1) сточной воды в присутствии растворов салициловой кислоты 8 к 4 часу исследования и удельной электропроводности (2) водных растворов 8 от концентрации, 3 – значение ХПК в контрольном образце 25°С.

Воздействие растворов СК **8** на процесс очистки СВ также носит немонотонный характер (рисунок 21, кривая *1*). Максимальная интенсификация скорости очистки СВ во всем изученном временном интервале наблюдается при $1 \cdot 10^{-11}$, $1 \cdot 10^{-8}$ М. Ниже с_п ($1 \cdot 10^{-7}$ М) происходит перемена знака биоэффекта, ингибирование (знак «-» на рисунке 21) процесса очистки СВ сменяется интенсификацией. Сопоставление зависимостей ХПК и χ растворов (рисунок 21, кривые *1* и 2) показало, что в области образования наноассоциатов, начиная с с_п и ниже, существенные изменения значений χ и ХПК происходят в одних и тех же интервалах концентраций. Максимальные значения χ растворов с концентрациями $1 \cdot 10^{-11}$ и $1 \cdot 10^{-8}$ М сопровождаются интенсификацией очистки СВ, минимальные значения χ при $1 \cdot 10^{-13}$, $1 \cdot 10^{-10}$ М соответствуют ухудшению очистки.

Таким образом, при изучении растворов СК и ПАБК в качестве биорегуляторов, стимулирующих микробиоценоз активного ила, используемого для очистки СВ, впервые обнаружена взаимосвязь между самоорганизацией и свойствами растворов этих соединений: образование наноассоциатов в интервале расчетных концентраций $1 \cdot 10^{-11} - 1 \cdot 10^{-8}$ М сопровождается появлением немонотонных изменений χ и биоэффекта с экстремумами в аналогичных интервалах концентраций.

Взаимосвязь самоорганизации, физико-химических свойств и биологической активности высокоразбавленных водных растворов наиболее наглядно можно проследить при изучении растворов БЦТА, для которых ниже с_п (10⁻⁵ M) (рисунок 14) в интервале концентраций $1 \cdot 10^{-12} - 1 \cdot 10^{-6}$ M и температур 25-45 °C установлено образование наноассоциатов, на основании чего сделано предположение о возможной биологической активности высокоразбавленных растворов БЦТА.

При изучении бактериостатической активности растворов БЦТА в отношении грамположительных бактерий *Bacillus subtilis* 6633 впервые обнаружено свойство высокоразбавленных растворов **12** изменять профиль зависимости «концентрация— биоэффект» на противоположный (рисунок 22, кривая 2).

Установлено, что раствор БЦТА с концентрациями $1 \cdot 10^{-5} - 1 \cdot 10^{-3}$ М, в которых образуются мицеллы домены, ингибирующее оказывает действие на рост бактерий Bacillus *subtilis 6633*, а при 1 · 10⁻¹⁰ и 1 · 10⁻¹¹ М, в которых образуются наноассоциаты, достоверное _ стимулирующее действие на 48 и 62% по сравнению с контролем.

Таким образом, нами впервые установлены и объяснены с позиций самоорганизации биоэффекты высокоразбавленных растворов ПАБК, СК и БЦТА, а также разнонаправленное

действие по сравнению с контролем растворов БЦТА и СК, наблюдаемое выше и ниже с_п, на рост бактерий

Рисунок 22. Зависимость размера частиц (1) и величины биоэффекта (2) в растворах БЦТА от концентрации, 3 – контроль.

Bacillus subtilis 6633 и скорость биохимического окисления загрязнителей микробиоценозом активного ила

Основные результаты и выводы

1. Впервые показано, что способность высокоразбавленных растворов производных гликольурила к образованию наноассоциатов существенным образом зависит от гидрофобных свойств заместителей у атома азота, а также от конфигурации гликольурила с фрагментом (S)-Меt и (R)-Меt. Ниже пороговой концентрации (c_n), лежащей в интервале $1 \cdot 10^{-5} - 1 \cdot 10^{-4}$ M, в растворах 2,4,6,8-тетраметилгликольурила, 2,6-диметил-4,8-диэтилгликольурила (рацемат), гликольурила с фрагментами (S)-метионина (энантиомерно чистый диастереомер) и (SR)-метионина (рацемат), выдержанных в естественных условиях, образуются наноассоциаты, следствием чего являются немонотонные концентрационные зависимости физико-химических свойств высокоразбавленных растворов этих соединений.

2. Установлена взаимосвязь между немонотонными концентрационными зависимостями размера и ζ-потенциала наноассоциатов, образующихся в растворах 2,4,6,8-тетраметилгликольурила (транквилизатор мебикар) в области 1·10⁻¹⁵-1·10⁻⁶ М, и физикохимическими свойствами (рН и удельная электропроводность) растворов аналогичной области концентраций, обусловленная образованием и перестройкой наноассоциатов.

3. Впервые установлено, что высокоразбавленные растворы 4-аминобензойной, 2гидроксибензойной кислот в интервале $1 \cdot 10^{-12} - 1 \cdot 10^{-8}$ М характеризуются немонотонными зависимостями удельной электропроводности от концентрации, обусловленные образованием и перестройкой наноассоциатов.

4. Комплексом физико-химических методов (ДРС, АТН, спектроскопия ЭПР спиновых зондов, кондуктометрия) показано, что разбавленные растворы $(1 \cdot 10^{-9} - 1 \cdot 10^{-3} \text{ M})$ бромида цетилтриметиламмония и 4-аминобензойной кислоты $(1 \cdot 10^{-11} - 1 \cdot 10^{-3} \text{ M})$ в интервале температур 25-45 °C и 25-40 °C, соответственно, представляют собой дисперсные системы, претерпевающие с ростом температуры структурные перестройки в области 30, 37 и 40 °C, что отражается на параметрах доменов $(1 \cdot 10^{-4}, 1 \cdot 10^{-3} \text{ M})$ и наноассоциатов $(1 \cdot 10^{-10}, 1 \cdot 10^{-9}, 1 \cdot 10^{-7} \text{ M})$ и обусловливает немонотонные температурные зависимости удельной электропроводности растворов и времени вращательной корреляции зонда ТЕМПО, характеризующего микровязкость доменов и наноассоциатов.

5. Впервые найдено, что высокоразбавленные растворы 4-аминобензойной и 2-гидроксибензойной кислот являются биорегуляторами процесса очистки сточной воды,

21

проявляющими наибольшую стимулирующую активность в интервале образования наноассоциатов и экстремальных изменений физико-химических свойств $1 \cdot 10^{-11} - 1 \cdot 10^{-8}$ М. 6. Показано, что разбавленные растворы бромида цетилтриметиламмония в интервале концентраций образования мицелл и доменов ($1 \cdot 10^{-5} - 1 \cdot 10^{-2}$ М) оказывают ингибирующее действие на рост грамположительных бактерий *Bacillus subtilis 6633*, а в интервале концентраций ниже пороговой концентрации ($1 \cdot 10^{-11} - 1 \cdot 10^{-9}$ М), в котором образуются наноассоциаты, - стимулирующее. Смена знака профиля зависимости «концентрация—биоэффект» (ингибирование-стимуляция) может быть объяснена образованием в растворе структур различной природы.

Основное содержание работы изложено в следующих публикациях:

Статьи:

1. Ryzhkina, I.S. Correlations between the self-organisation, physicochemical properties and biological activity of Mebicar in dilute aqueous solutions / I.S. Ryzhkina, Yu.V. Kiseleva, O.A. Mishina*, A.P. Timosheva, S.Yu. Sergeeva, A.N. Kravchenko and A.I. Konovalov // Mendeleev Commun. – 2013. – no.23. P. 262-264.

2. Муртазина, Л.И. Физико-химическое обоснование использования растворов салициловой кислоты низких концентраций для интенсификации процесса биоочистки сточных вод / Л.И. Муртазина, И.С. Рыжкина, О.А. Мишина*, Ю.В. Киселева, Т.П. Павлова, С.В. Фридланд // Вестник Казанского технологического университета. – 2013. – Т. 16. - №1. – С. 175-178.

3. Рыжкина, И.С. Высокоразбавленные растворы бромида цетилтриметиламмония: взаимосвязь самоорганизации, физико-химических свойств и биологической активности / И.С. Рыжкина, О.А. Мишина, А.П. Тимошева, Ю.В. Киселева, А.Д. Волошина, А.И. Кулик, А.И. Коновалов // Доклады АН. – 2014. – Т. 459. - №1. – С. 51-57.

4. Ryzhkina, I.S. Highly dilution solutions of glycoluriles enantiomers with fragments of (R) - and (S)-methionine: selective ability to self-organization and a change of the nature of a chirality / I.S. Ryzhkina, Yu.V. Kiseleva, L.I. Murtazina, O.A. Mishina, A.P. Timosheva, S.Yu. Sergeeva, V.V. Baranov, A.N. Kravchenko and A.I. Konovalov // Mendeleev Commun. – 2015.– no.25 – P. 72-74.

5. Рыжкина, И.С. Самоорганизация и свойства разбавленных водных растворов бромида цетилтриметиламмония в интервале физиологически важных температур / И.С. Рыжкина, Ю.В. Киселева, О.А. Мишина, Л.И. Муртазина, А.И. Литвинов, М.К. Кадиров, А.И. Коновалов // Изв. АН. Сер. Хим. – 2015. - №3. – С. 579-589.

6. Мишина, О.А. Взаимосвязь самоорганизации, физико-химических свойств и биологической активности растворов *n*-аминобензойной кислоты низких концентраций / О.А. Мишина, Л.И. Муртазина, И.С. Рыжкина, А.И. Коновалов // Изв. АН. Сер. Хим. – 2015. - №3. – С. 590-596.

7. Коновалов А.И., Рыжкина И.С., Муртазина Л.И., Киселева Ю.В., Мишина О.А. Образование наноассоциатов – ключ к решению проблем высокоразбавленных водных растворов. Глава в монографии **Высокореакционные интермедиаты** / Под ред. М.П. Егорова и М.Я. Мельникова.. – М.: КРАСАНД, 2014. – 416 с.

Тезисы докладов:

8. Кравченко, А.Н. Самоорганизация, физико-химические свойства и биологическая активность водных растворов мебикара низких концентраций в естественной и гипогеомагнитной среде / А.Н. Кравченко, И.С. Рыжкина, Ю.В. Киселева, Л.И. Муртазина, О.А. Мишина,

Фамилия Мишина изменена на фамилию Салахутдинова в связи с вступлением в брак 6.08.2015.

Е.Д. Шерман, Л.В. Аникина, Ю.Б. Вихрев, А.И. Коновалов // VI Международный конгресс «Слабые и сверхслабые поля и излучения в биологии и медицине». Тезисы докладов. - Санкт-Петербург. – 2012. - С.78.

9. Рыжкина, И.С. Сравнительное изучение самоорганизации и физико-химических свойств водных растворов антиоксидантов в нормальных и гипогеомагнитных условиях / И.С. Рыжкина, Ю.В. Киселева, Л.И. Муртазина, О.А. Мишина, А.И. Коновалов // VI Международный конгресс «Слабые и сверхслабые поля и излучения в биологии и медицине». Тезисы докладов. - Санкт-Петербург. - 2012. - С. 89.

10. Муртазина, Л.И. Изучение самоорганизации и физико-химических свойств питательной среды RPMI-1640 и растворов её основных компонентов / Л.И. Муртазина, О.А. Мишина, Э.М. Масагутова, И.С. Рыжкина, А.И. Коновалов // Международная конференция «Структура воды: физические и биологические аспекты». Тезисы докладов. - Санкт-Петербург. – 2013. - С. 37-38.

11. Рыжкина, И.С. Энантиомерный контроль образования наноассоциатов в высокоразбавленных растворах метиониновых производных гликольурилов / И.С. Рыжкина, Ю.В. Киселева, Л.И. Муртазина, А.П. Тимошева, О.А. Мишина, С.Ю. Сергеева, А.Н. Кравченко, А.И. Коновалов // Международная конференция «Структура воды: физические и биологические аспекты». Тезисы докладов. - Санкт-Петербург. – 2013. - С. 54-55.

12. Мишина, О.А. Влияние растворов низких концентраций биорегулятора активности микроорганизмов на самоорганизацию и физико-химические свойства питательной среды RPMI-1640 / О.А. Мишина, Л.И. Муртазина, Э.М. Масагутова, И.С. Рыжкина, Т.П. Павлова, С.В. Фридланд, А.И. Коновалов // XXV Симпозиум «Современная химическая физика». Сборник аннотаций. - Туапсе. - 2013. - С.80.

13. Мишина, О.А. Физико-химическое обоснование влияния высокоразбавленных водных растворов *n*-аминобензойной кислоты на биоценоз активного ила / О.А. Мишина, Л.И. Муртазина, И.С. Рыжкина, Т.П. Павлова // XXI Всероссийская конференция «Структура и динамика молекулярных систем». Сборник тезисов докладов. – Уфа. - 2014. – С.109.

14. Murtazina, L.I. Supramolecular systems based on electrolytes solutions as a model for studying the effects of biological active compounds on biosystems / L.I. Murtazina, I.S. Ryzhkina, E.M. Masagutova, O.A. Mishina, A.I. Konovalov // XXVI Международная Чугаевская конференция по координационной химии. Тезисы докладов. – Казань. – 2014. - С. 595.

15. Mishina, O.A. Effect of structure of glycoluril derivatives on self-organisation and properties of highly dilute aqueous solutions / O.A. Mishina, E.M. Masagutova, Yu.V. Kiseleva, L.I. Murtazina, A.P. Timosheva, I.S. Ryzhkina, A.N. Kravchenko and A.I. Konovalov // XXVI Международная Чугаевская конференция по координационной химии. Тезисы докладов. - Казань. – 2014. - С. 703.

16. Киселева, Ю.В. Влияние температуры на параметры нанообъектов и свойства растворов бромида цетилтриметиламмония / Ю.В. Киселева, О.А. Мишина, А.И. Литвинов, М.К. Кадиров, И.С. Рыжкина, А.И. Коновалов // IX Всероссийская конференция «Высокореакционные интермедиаты химических и биохимических реакций». Тезисы докладов. – Московская область. - 2014. – С. 25.

17. Мишина, О.А. Влияние внешних факторов (температура и физические поля) на самоорганизацию и физико-химические свойства высокоразбавленных растворов некоторых биологически активных веществ / О.А. Мишина, И.С. Рыжкина, А.И. Коновалов // XII Всероссийская конференция с международным участием «Проблемы сольватации и комплексообразования в растворах. От эффектов в растворах к новым материалам». Тезисы докладов. – Иваново. – 2015. – С.115.